Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast and Adaptive Multi-agent Planning under Collaborative Temporal Logic Tasks via Poset Products (2308.11373v2)

Published 22 Aug 2023 in cs.RO

Abstract: Efficient coordination and planning is essential for large-scale multi-agent systems that collaborate in a shared dynamic environment. Heuristic search methods or learning-based approaches often lack the guarantee on correctness and performance. Moreover, when the collaborative tasks contain both spatial and temporal requirements, e.g., as Linear Temporal Logic (LTL) formulas, formal methods provide a verifiable framework for task planning. However, since the planning complexity grows exponentially with the number of agents and the length of the task formula, existing studies are mostly limited to small artificial cases. To address this issue, a new planning paradigm is proposed in this work for system-wide temporal task formulas that are released online and continually. It avoids two common bottlenecks in the traditional methods, i.e., (i) the direct translation of the complete task formula to the associated B\"uchi automaton; and (ii) the synchronized product between the B\"uchi automaton and the transition models of all agents. Instead, an adaptive planning algorithm is proposed that computes the product of relaxed partially-ordered sets (R-posets) on-the-fly, and assigns these subtasks to the agents subject to the ordering constraints. It is shown that the first valid plan can be derived with a polynomial time and memory complexity w.r.t. the system size and the formula length. Our method can take into account task formulas with a length of more than 400 and a fleet with more than $400$ agents, while most existing methods fail at the formula length of 25 within a reasonable duration. The proposed method is validated on large fleets of service robots in both simulation and hardware experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. H. Jemal, Z. Kechaou, M. B. Ayed, and A. M. Alimi, “A multi agent system for hospital organization,” International Journal of Machine Learning and Computing, vol. 5, no. 1, pp. 51–56, 2015.
  2. O. M. Cliff, R. Fitch, S. Sukkarieh, D. L. Saunders, and R. Heinsohn, “Online localization of radio-tagged wildlife with an autonomous aerial robot system,” in Robotics: Science and Systems, 2015.
  3. C. Zhang, A. Hammad, and H. Bahnassi, “Collaborative multi-agent systems for construction equipment based on real-time field data capturing,” Journal of Information Technology in Construction (ITcon), vol. 14, no. 16, pp. 204–228, 2009.
  4. T. Arai, E. Pagello, L. E. Parker et al., “Advances in multi-robot systems,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 655–661, 2002.
  5. P. Toth and D. Vigo, “An overview of vehicle routing problems,” The Vehicle Routing Problem, pp. 1–26, 2002.
  6. J. Fink, M. A. Hsieh, and V. Kumar, “Multi-robot manipulation via caging in environments with obstacles,” in 2008 IEEE International Conference on Robotics and Automation, 2008, pp. 1471–1476.
  7. P. Arm, G. Waibel, J. Preisig, T. Tuna, R. Zhou, V. Bickel, G. Ligeza, T. Miki, F. Kehl, H. Kolvenbach, and M. Hutter, “Scientific exploration of challenging planetary analog environments with a team of legged robots,” Science Robotics, vol. 8, no. 80, p. eade9548, 2023.
  8. A. Varava, K. Hang, D. Kragic, and F. T. Pokorny, “Herding by caging: a topological approach towards guiding moving agents via mobile robots.” in Robotics: Science and Systems, 2017, pp. 696–700.
  9. Y. Ozkan-Aydin and D. I. Goldman, “Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasks,” Science Robotics, vol. 6, no. 56, p. eabf1628, 2021.
  10. W. Ruan, H. Duan, Y. Sun, W. Yuan, and J. Xia, “Multiplayer reach–avoid differential games in 3d space inspired by harris’ hawks’ cooperative hunting tactics,” Research, vol. 6, p. 0246, 2023.
  11. S. Kartik and C. Siva, Ram Murthy, “Task allocation algorithms for maximizing reliability of distributed computing systems,” IEEE Transactions on Computers, vol. 46, no. 6, pp. P.719–724, 1997.
  12. P. Agrawal, P. Varakantham, and W. Yeoh, “Scalable greedy algorithms for task/resource constrained multi-agent stochastic planning.” in Proceedings of the 25th International Joint Conference on Artificial Intelligence IJCAI 2016: New York, July 9, vol. 15, 2016, pp. 10–16.
  13. B. Keshanchi, A. Souri, and N. J. Navimipour, “An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: Formal verification, simulation, and statistical testing,” Journal of Systems and Software, vol. 124, pp. 1–21, 2017.
  14. J. Li, R. Zhang, and Y. Yang, “Multi-auv autonomous task planning based on the scroll time domain quantum bee colony optimization algorithm in uncertain environment,” PloS one, vol. 12, no. 11, p. e0188291, 2017.
  15. H. Wu and R. Xiao, “Flexible wolf pack algorithm for dynamic multidimensional knapsack problems,” Research, 2020.
  16. M. Yan, H. Yuan, J. Xu, Y. Yu, and L. Jin, “Task allocation and route planning of multiple uavs in a marine environment based on an improved particle swarm optimization algorithm,” EURASIP Journal on Advances in Signal Processing, pp. 1–23, 2021.
  17. S. Biswas, S. G. Anavatti, and M. A. Garratt, “Particle swarm optimization based co-operative task assignment and path planning for multi-agent system,” in 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 2017, pp. 1–6.
  18. A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learning feasibility for task and motion planning in tabletop environments,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1255–1262, 2019.
  19. S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep decentralized multi-task multi-agent reinforcement learning under partial observability,” in Proceedings of the 34th International Conference on Machine Learning, vol. 70, 06–11 Aug 2017, pp. 2681–2690.
  20. M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-agent pickup and delivery,” in Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2019.
  21. H. Zhang, W. Du, J. Shan, Q. Zhou, Y. Du, J. B. Tenenbaum, T. Shu, and C. Gan, “Building cooperative embodied agents modularly with large language models,” arXiv preprint arXiv:2307.02485, 2023.
  22. J. Ruan, Y. Chen, B. Zhang, Z. Xu, T. Bao, G. Du, S. Shi, H. Mao, X. Zeng, and R. Zhao, “Tptu: Task planning and tool usage of large language model-based ai agents,” arXiv preprint arXiv:2308.03427, 2023.
  23. R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990.
  24. O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,” in International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems.   Springer, 2004, pp. 152–166.
  25. X. Luo, Y. Kantaros, and M. M. Zavlanos, “An abstraction-free method for multirobot temporal logic optimal control synthesis,” IEEE Transactions on Robotics, 2021.
  26. M. Guo and D. V. Dimarogonas, “Task and motion coordination for heterogeneous multiagent systems with loosely coupled local tasks,” IEEE Transactions on Automation Science and Engineering, vol. 14, no. 2, pp. 797–808, 2016.
  27. X. Luo and M. M. Zavlanos, “Temporal logic task allocation in heterogeneous multi-robot systems,” IEEE Transactions on Robotics, vol. 38, no. 6, pp. 3602–3621, 2022.
  28. Y. E. Sahin, P. Nilsson, and N. Ozay, “Multirobot coordination with counting temporal logics,” IEEE Transactions on Robotics, vol. 36, no. 4, pp. 1189–1206, 2019.
  29. A. M. Jones, K. Leahy, C. Vasile, S. Sadraddini, Z. Serlin, R. Tron, and C. Belta, “Scratchs: Scalable and robust algorithms for task-based coordination from high-level specifications,” in Proc. Int. Symp. Robot. Res., 2019, pp. 1–16.
  30. P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Decomposition of finite ltl specifications for efficient multi-agent planning,” in International Symposium on Distributed Autonomous Robotic Systems, 2016.
  31. P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Simultaneous task allocation and planning for temporal logic goals in heterogeneous multi-robot systems,” The International Journal of Robotics Research, vol. 37, no. 7, pp. 818–838, 2018.
  32. Y. Kantaros and M. M. Zavlanos, “Stylus*: A temporal logic optimal control synthesis algorithm for large-scale multi-robot systems,” The International Journal of Robotics Research, vol. 39, no. 7, pp. 812–836, 2020.
  33. X. Yu, X. Yin, S. Li, and Z. Li, “Security-preserving multi-agent coordination for complex temporal logic tasks,” Control Engineering Practice, vol. 123, p. 105130, 2022.
  34. L. Li, Z. Chen, H. Wang, and Z. Kan, “Fast task allocation of heterogeneous robots with temporal logic and inter-task constraints,” IEEE Robotics and Automation Letters, 2023.
  35. J. Bonnet, M.-P. Gleizes, E. Kaddoum, S. Rainjonneau, and G. Flandin, “Multi-satellite mission planning using a self-adaptive multi-agent system,” in 2015 IEEE 9th International Conference on Self-Adaptive and Self-Organizing Systems, 2015, pp. 11–20.
  36. Q. Yang, Z. Luo, W. Song, and R. Parasuraman, “Self-reactive planning of multi-robots with dynamic task assignments,” in 2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), 2019, pp. 89–91.
  37. M. Faroni, A. Umbrico, M. Beschi, A. Orlandini, A. Cesta, and N. Pedrocchi, “Optimal task and motion planning and execution for multiagent systems in dynamic environments,” IEEE Transactions on Cybernetics, pp. 1–12, 2023.
  38. S. Choudhury, J. K. Gupta, M. J. Kochenderfer, D. Sadigh, and J. Bohg, “Dynamic multi-robot task allocation under uncertainty and temporal constraints,” Autonomous Robots, vol. 46, no. 1, pp. 231–247, 2022.
  39. D. Tian, H. Fang, Q. Yang, Z. Guo, J. Cui, W. Liang, and Y. Wu, “Two-phase motion planning under signal temporal logic specifications in partially unknown environments,” IEEE Transactions on Industrial Electronics, vol. 70, no. 7, pp. 7113–7121, 2023.
  40. M. Ben-Ari, “A primer on model checking,” ACM Inroads, vol. 1, no. 1, pp. 40–47, 2010.
  41. P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in Proceedings of the 13th International Conference on Computer Aided Verification, 2002, pp. 53–65.
  42. X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control of markov decision processes with linear temporal logic constraints,” IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1244–1257, 2014.
  43. M. Kloetzer and C. Mahulea, “Accomplish multi-robot tasks via petri net models,” in 2015 IEEE International Conference on Automation Science and Engineering (CASE), 2015, pp. 304–309.
  44. K. Leahy, Z. Serlin, C.-I. Vasile, A. Schoer, A. M. Jones, R. Tron, and C. Belta, “Scalable and robust algorithms for task-based coordination from high-level specifications (scratches),” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2516–2535, 2022.
  45. P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Hierarchical ltl-task mdps for multi-agent coordination through auctioning and learning,” The International Journal of Robotics Research, 2019.
  46. Y. Kantaros and M. M. Zavlanos, “Sampling-based optimal control synthesis for multirobot systems under global temporal tasks,” IEEE Transactions on Automatic Control, vol. 64, no. 5, pp. 1916–1931, 2018.
  47. N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) designs,” in Verification, Model Checking, and Abstract Interpretation, 2006, pp. 364–380.
  48. V. Vasilopoulos, Y. Kantaros, G. J. Pappas, and D. E. Koditschek, “Reactive planning for mobile manipulation tasks in unexplored semantic environments,” in International Conference on Robotics and Automation, 2021.
  49. C. K. Verginis and D. V. Dimarogonas, “Multi-agent motion planning and object transportation under high level goals,” in IFAC World Congress, 2018.
  50. B. Lacerda, D. Parker, and N. Hawes, “Optimal and dynamic planning for markov decision processes with co-safe ltl specifications,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 1511–1516.
  51. S. Feyzabadi and S. Carpin, “Multi-objective planning with multiple high level task specifications,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 5483–5490.
  52. Z. Liu, M. Guo, and Z. Li, “Time minimization and online synchronization for multi-agent systems under collaborative temporal logic tasks,” Automatica, vol. 159, p. 111377, 2024.
  53. Smith, “The contract net protocol: High-level communication and control in a distributed problem solver,” IEEE Transactions on Computers, vol. C-29, no. 12, pp. 1104–1113, 1980.
  54. F. Faruq, D. Parker, B. Laccrda, and N. Hawes, “Simultaneous task allocation and planning under uncertainty,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 3559–3564.
  55. C. K. Verginis and D. V. Dimarogonas, “Multi-agent motion planning and object transportation under high level goals,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 15 816–15 821, 2017.
  56. D. C. Kozen and D. C. Kozen, “Depth-first and breadth-first search,” The Design and Analysis of Algorithms, pp. 19–24, 1992.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com