Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 11 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

The Condorcet Dimension of Metric Spaces (2410.09201v2)

Published 11 Oct 2024 in cs.GT and cs.MA

Abstract: A Condorcet winning set is a set of candidates such that no other candidate is preferred by at least half the voters over all members of the set. The Condorcet dimension, which is the minimum cardinality of a Condorcet winning set, is known to be at most logarithmic in the number of candidates. We study the case of elections where voters and candidates are located in a $2$-dimensional space with preferences based upon proximity voting. Our main result is that the Condorcet dimension is at most $3$, under both the Manhattan norm and the infinity norm, natural measures in electoral systems.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.