Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Bounds for the No-Show Paradox via SAT Solving (1602.08063v1)

Published 25 Feb 2016 in cs.GT

Abstract: Voting rules allow multiple agents to aggregate their preferences in order to reach joint decisions. Perhaps one of the most important desirable properties in this context is Condorcet-consistency, which requires that a voting rule should return an alternative that is preferred to any other alternative by some majority of voters. Another desirable property is participation, which requires that no voter should be worse off by joining an electorate. A seminal result in social choice theory by Moulin (1998) has shown that Condorcet-consistency and participation are incompatible whenever there are at least 4 alternatives and 25 voters. We leverage SAT solving to obtain an elegant human-readable proof of Moulin's result that requires only 12 voters. Moreover, the SAT solver is able to construct a Condorcet-consistent voting rule that satisfies participation as well as a number of other desirable properties for up to 11 voters, proving the optimality of the above bound. We also obtain tight results for set-valued and probabilistic voting rules, which complement and significantly improve existing theorems.

Citations (65)

Summary

We haven't generated a summary for this paper yet.