Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Condorcet Domains, Median Graphs and the Single Crossing Property (1507.08219v2)

Published 29 Jul 2015 in math.CO and cs.GT

Abstract: Condorcet domains are sets of linear orders with the property that, whenever the preferences of all voters belong to this set, the majority relation has no cycles. We observe that, without loss of generality, such domain can be assumed to be closed in the sense that it contains the majority relation of every profile with an odd number of individuals whose preferences belong to this domain. We show that every closed Condorcet domain is naturally endowed with the structure of a median graph and that, conversely, every median graph is associated with a closed Condorcet domain (which may not be a unique one). The subclass of those Condorcet domains that correspond to linear graphs (chains) are exactly the preference domains with the classical single crossing property. As a corollary, we obtain that the domains with the so-called `representative voter property' (with the exception of a 4-cycle) are the single crossing domains. Maximality of a Condorcet domain imposes additional restrictions on the underlying median graph. We prove that among all trees only the chains can induce maximal Condorcet domains, and we characterize the single crossing domains that in fact do correspond to maximal Condorcet domains. Finally, using Nehring's and Puppe's (2007) characterization of monotone Arrowian aggregation, our analysis yields a rich class of strategy-proof social choice functions on any closed Condorcet domain.

Citations (44)

Summary

We haven't generated a summary for this paper yet.