Towards Input-Convex Neural Network Modeling for Battery Optimization in Power Systems (2410.09166v1)
Abstract: Battery energy storage systems (BESS) play an increasingly vital role in integrating renewable generation into power grids due to their ability to dynamically balance supply. Grid-tied batteries typically employ power converters, where part-load efficiencies vary non-linearly. While this non-linearity can be modeled with high accuracy, it poses challenges for optimization, particularly in ensuring computational tractability. In this paper, we consider a non-linear BESS formulation based on the Energy Reservoir Model (ERM). A data-driven approach is introduced with the input-convex neural network (ICNN) to approximate the nonlinear efficiency with a convex function. The epigraph of the convex function is used to engender a convex program for battery ERM optimization. This relaxed ICNN method is applied to two battery optimization use-cases: PV smoothing and revenue maximization, and it is compared with three other ERM formulations (nonlinear, linear, and mixed-integer). Specifically, ICNN-based methods appear to be promising for future battery optimization with desirable feasibility and optimality outcomes across both use-cases.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.