Extra Global Attention Designation Using Keyword Detection in Sparse Transformer Architectures (2410.08971v1)
Abstract: In this paper, we propose an extension to Longformer Encoder-Decoder, a popular sparse transformer architecture. One common challenge with sparse transformers is that they can struggle with encoding of long range context, such as connections between topics discussed at a beginning and end of a document. A method to selectively increase global attention is proposed and demonstrated for abstractive summarization tasks on several benchmark data sets. By prefixing the transcript with additional keywords and encoding global attention on these keywords, improvement in zero-shot, few-shot, and fine-tuned cases is demonstrated for some benchmark data sets.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.