Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Robust Discontinuous Galerkin Methods Maintaining Physical Constraints for General Relativistic Hydrodynamics (2410.05000v1)

Published 7 Oct 2024 in math.NA, astro-ph.IM, cs.NA, gr-qc, and physics.comp-ph

Abstract: Simulating general relativistic hydrodynamics (GRHD) presents challenges such as handling curved spacetime, achieving high-order shock-capturing accuracy, and preserving key physical constraints (positive density, pressure, and subluminal velocity) under nonlinear coupling. This paper introduces high-order, physical-constraint-preserving, oscillation-eliminating discontinuous Galerkin (PCP-OEDG) schemes with Harten-Lax-van Leer flux for GRHD. To suppress spurious oscillations near discontinuities, we incorporate a computationally efficient oscillation-eliminating (OE) procedure based on a linear damping equation, maintaining accuracy and avoiding complex characteristic decomposition. To enhance stability and robustness, we construct PCP schemes using the W-form of GRHD equations with Cholesky decomposition of the spatial metric, addressing the non-equivalence of admissible state sets in curved spacetime. We rigorously prove the PCP property of cell averages via technical estimates and the Geometric Quasi-Linearization (GQL) approach, which transforms nonlinear constraints into linear forms. Additionally, we present provably convergent PCP iterative algorithms for robust recovery of primitive variables, ensuring physical constraints are satisfied throughout. The PCP-OEDG method is validated through extensive tests, demonstrating its robustness, accuracy, and capability to handle extreme GRHD scenarios involving strong shocks, high Lorentz factors, and intense gravitational fields.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube