Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Physical-Constraint-Preserving Finite Volume WENO Method for Special Relativistic Hydrodynamics on Unstructured Meshes (2207.09385v1)

Published 19 Jul 2022 in math.NA, astro-ph.IM, cs.NA, physics.comp-ph, and physics.flu-dyn

Abstract: This paper presents a highly robust third-order accurate finite volume weighted essentially non-oscillatory (WENO) method for special relativistic hydrodynamics on unstructured triangular meshes. We rigorously prove that the proposed method is physical-constraint-preserving (PCP), namely, always preserves the positivity of the pressure and the rest-mass density as well as the subluminal constraint on the fluid velocity. The method is built on a highly efficient compact WENO reconstruction on unstructured meshes, a simple PCP limiter, the provably PCP property of the Harten--Lax--van Leer flux, and third-order strong-stability-preserving time discretization. Due to the relativistic effects, the primitive variables (namely, the rest-mass density, velocity, and pressure) are highly nonlinear implicit functions in terms of the conservative variables, making the design and analysis of our method nontrivial. To address the difficulties arising from the strong nonlinearity, we adopt a novel quasilinear technique for the theoretical proof of the PCP property. Three provable convergence-guaranteed iterative algorithms are also introduced for the robust recovery of primitive quantities from admissible conservative variables. We also propose a slight modification to an existing WENO reconstruction to ensure the scaling invariance of the nonlinear weights and thus to accommodate the homogeneity of the evolution operator, leading to the advantages of the modified WENO reconstruction in resolving multi-scale wave structures. Extensive numerical examples are presented to demonstrate the robustness, expected accuracy, and high resolution of the proposed method.

Citations (11)

Summary

We haven't generated a summary for this paper yet.