Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

SITCOM: Step-wise Triple-Consistent Diffusion Sampling for Inverse Problems (2410.04479v2)

Published 6 Oct 2024 in eess.IV, cs.CV, and cs.LG

Abstract: Diffusion models (DMs) are a class of generative models that allow sampling from a distribution learned over a training set. When applied to solving inverse problems, the reverse sampling steps are modified to approximately sample from a measurement-conditioned distribution. However, these modifications may be unsuitable for certain settings (e.g., presence of measurement noise) and non-linear tasks, as they often struggle to correct errors from earlier steps and generally require a large number of optimization and/or sampling steps. To address these challenges, we state three conditions for achieving measurement-consistent diffusion trajectories. Building on these conditions, we propose a new optimization-based sampling method that not only enforces standard data manifold measurement consistency and forward diffusion consistency, as seen in previous studies, but also incorporates our proposed step-wise and network-regularized backward diffusion consistency that maintains a diffusion trajectory by optimizing over the input of the pre-trained model at every sampling step. By enforcing these conditions (implicitly or explicitly), our sampler requires significantly fewer reverse steps. Therefore, we refer to our method as Step-wise Triple-Consistent Sampling (SITCOM). Compared to SOTA baselines, our experiments across several linear and non-linear tasks (with natural and medical images) demonstrate that SITCOM achieves competitive or superior results in terms of standard similarity metrics and run-time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.