Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

WiDistill: Distilling Large-scale Wi-Fi Datasets with Trajectory Matching (2410.04073v1)

Published 5 Oct 2024 in eess.SP

Abstract: Wi-Fi based human activity recognition is a technology with immense potential in home automation, advanced caregiving, and enhanced security systems. It can distinguish human activity in environments with poor lighting and obstructions. However, most current Wi-Fi based human activity recognition methods are data-driven, leading to a continuous increase in the size of datasets. This results in a significant increase in the resources and time required to store and utilize these datasets. To address this issue, we propose WiDistill, a large-scale Wi-Fi datasets distillation method. WiDistill improves the distilled dataset by aligning the parameter trajectories of the distilled data with the recorded expert trajectories. WiDistill significantly reduces the need for the original large-scale Wi-Fi datasets and allows for faster training of models that approximate the performance of the original network, while also demonstrating robust performance in cross-network environments. Extensive experiments on the Widar3.0, XRF55, and MM-Fi datasets demonstrate that WiDistill outperforms other methods. The code can be found in https://github.com/the-sky001/WiDistill.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.