Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Penalized Sparse Covariance Regression with High Dimensional Covariates (2410.04028v1)

Published 5 Oct 2024 in stat.ME and stat.AP

Abstract: Covariance regression offers an effective way to model the large covariance matrix with the auxiliary similarity matrices. In this work, we propose a sparse covariance regression (SCR) approach to handle the potentially high-dimensional predictors (i.e., similarity matrices). Specifically, we use the penalization method to identify the informative predictors and estimate their associated coefficients simultaneously. We first investigate the Lasso estimator and subsequently consider the folded concave penalized estimation methods (e.g., SCAD and MCP). However, the theoretical analysis of the existing penalization methods is primarily based on i.i.d. data, which is not directly applicable to our scenario. To address this difficulty, we establish the non-asymptotic error bounds by exploiting the spectral properties of the covariance matrix and similarity matrices. Then, we derive the estimation error bound for the Lasso estimator and establish the desirable oracle property of the folded concave penalized estimator. Extensive simulation studies are conducted to corroborate our theoretical results. We also illustrate the usefulness of the proposed method by applying it to a Chinese stock market dataset.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.