Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A survey of Zarankiewicz problems in geometry (2410.03702v2)

Published 24 Sep 2024 in math.HO, cs.CG, cs.DM, and math.CO

Abstract: One of the central topics in extremal graph theory is the study of the function $ex(n,H)$, which represents the maximum number of edges a graph with $n$ vertices can have while avoiding a fixed graph $H$ as a subgraph. Tur{\'a}n provided a complete characterization for the case when $H$ is a complete graph on $r$ vertices. Erd{\H o}s, Stone, and Simonovits extended Tur{\'a}n's result to arbitrary graphs $H$ with $\chi(H) > 2$ (chromatic number greater than 2). However, determining the asymptotics of $ex(n, H)$ for bipartite graphs $H$ remains a widely open problem. A classical example of this is Zarankiewicz's problem, which asks for the asymptotics of $ex(n, K_{t,t})$. In this paper, we survey Zarankiewicz's problem, with a focus on graphs that arise from geometry. Incidence geometry, in particular, can be viewed as a manifestation of Zarankiewicz's problem in geometrically defined graphs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube