Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zarankiewicz's problem via $ε$-t-nets (2311.13662v2)

Published 22 Nov 2023 in math.CO and cs.CG

Abstract: The classical Zarankiewicz's problem asks for the maximum number of edges in a bipartite graph on $n$ vertices which does not contain the complete bipartite graph $K_{t,t}$. In one of the cornerstones of extremal graph theory, K\H{o}v\'ari S\'os and Tur\'an proved an upper bound of $O(n{2-\frac{1}{t}})$. In a celebrated result, Fox et al. obtained an improved bound of $O(n{2-\frac{1}{d}})$ for graphs of VC-dimension $d$ (where $d<t$). Basit, Chernikov, Starchenko, Tao and Tran improved the bound for the case of semilinear graphs. At SODA'23, Chan and Har-Peled further improved Basit et al.'s bounds and presented (quasi-)linear upper bounds for several classes of geometrically-defined incidence graphs, including a bound of $O(n \log \log n)$ for the incidence graph of points and pseudo-discs in the plane. In this paper we present a new approach to Zarankiewicz's problem, via $\epsilon$-t-nets - a recently introduced generalization of the classical notion of $\epsilon$-nets. We show that the existence of `small'-sized $\epsilon$-t-nets implies upper bounds for Zarankiewicz's problem. Using the new approach, we obtain a sharp bound of $O(n)$ for the intersection graph of two families of pseudo-discs, thus both improving and generalizing the result of Chan and Har-Peled from incidence graphs to intersection graphs. We also obtain a short proof of the $O(n{2-\frac{1}{d}})$ bound of Fox et al., and show improved bounds for several other classes of geometric intersection graphs, including a sharp $O(n\frac{\log n}{\log \log n})$ bound for the intersection graph of two families of axis-parallel rectangles.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. On tangencies among planar curves with an application to coloring L-shapes, proceedings of EuroComb 2021, Trends in Mathematics — Research Perspectives, CRM Barcelona 14, 2021.
  2. P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In Advances in Discrete and Computational Geometry. Ed. by B. Chazelle, J. E. Goodman, and R. Pollack. AMS Press, pages 1–56, 1999.
  3. Dominating sets in k-majority tournaments. J. Comb. Theory, Ser. B, 96(3):374–387, 2006.
  4. Partitioning and geometric embedding of range spaces of finite vapnik-chervonenkis dimension. In D. Soule, editor, Proceedings of SoCG’1987, pages 331–340. ACM, 1987.
  5. The ϵitalic-ϵ\epsilonitalic_ϵ-t-net problem. Discret. Comput. Geom., 68(2):618–644, 2022.
  6. Approximate polytope membership queries. SIAM J. Comput., 47(1):1–51, 2018.
  7. Zarankiewicz’s problem for semilinear hypergraphs. Forum Math. Sigma, 9:Paper No. e59, 23, 2021.
  8. Learnability and the vapnik-chervonenkis dimension. J. ACM, 36(4):929–965, 1989.
  9. W. G. Brown. On graphs that do not contain a Thomsen graph. Canadian Math. Bulletin, 9(3):281–285, 1966.
  10. Topological hypergraphs. Thirty Essays on Geometric Graph Theory, 2013.
  11. T. M. Chan. Improved deterministic algorithms for linear programming in low dimensions. ACM Trans. Algorithms, 14(3):30:1–30:10, 2018.
  12. T. M. Chan and S. Har-Peled. On the number of incidences when avoiding an induced biclique in geometric settings. In Proceedings of SODA 2023, pages 1398–1413. SIAM, 2023.
  13. Hopcroft’s problem, log-star shaving, 2d fractional cascading, and decision trees. In Proceedings of SODA 2022, pages 190–210. SIAM, 2022.
  14. B. Chazelle. Lower bounds for orthogonal range searching: I. The reporting case. J. ACM, 37(2):200–212, 1990.
  15. T. Do. Representation complexities of semi-algebraic graphs. SIAM J. Discret. Math., 4(33):1864–1877, 2019.
  16. J. Fox and J. Pach. Separator theorems and Turán-type results for planar intersection graph. Advances in Mathematics, 219(3):1070–1080, 2008.
  17. J. Fox and J. Pach. Coloring kkk{}_{\mbox{k}}start_FLOATSUBSCRIPT k end_FLOATSUBSCRIPT-free intersection graphs of geometric objects in the plane. Eur. J. Comb., 33(5):853–866, 2012.
  18. A semi-algebraic version of Zarankiewicz’s problem. J. Euro. Math. Soc., 19(6):1785–1810, 2017.
  19. N. Frankl and A. Kupavskii. On the Erdős-Purdy problem and the Zarankiewitz problem for semialgebraic graphs, available at arxiv: 2112.10245, 2021.
  20. W. T. Gowers. Hypergraph regularity and the multidimensional szemerédi’s theorem. Annals of Mathematics, 166:897–946, 2007.
  21. D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete Comput. Geom., 2:127–151, 1987.
  22. O. Janzer and C. Pohoata. On the Zarankiewicz problem for graphs with bounded VC-dimension, available at arxiv: 2009.00130, 2020.
  23. C. Keller and S. Smorodinsky. Conflict-free coloring of intersection graphs of geometric objects. Discret. Comput. Geom., 64(3):916–941, 2020.
  24. B. Keszegh. Coloring intersection hypergraphs of pseudo-disks. In Bettina Speckmann and Csaba D. Tóth, editors, Proceedings of SoCG 2018, volume 99 of LIPIcs, pages 52:1–52:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
  25. Almost tight bounds for epsilon-nets. Discret. Comput. Geom., 7:163–173, 1992.
  26. On a problem of Zarankiewicz. Colloq. Math., 3:50–57, 1954.
  27. N. H. Mustafa and J. Pach. On the Zarankiewicz problem for intersection hypergraphs. J. Comb. Theory, Ser. A, 141:1–7, 2016.
  28. N. H. Mustafa and K. Varadarajan. Epsilon-approximations & epsilon-nets, in: Handbook of Discrete and Computational Geometry, 3rd ed., pages 1241–1267. CRC Press, Boka Raton, 2018.
  29. R. Pinchasi. A finite family of pseudodiscs must include a ”small” pseudodisc. SIAM J. Discrete Math., 28(4):1930–1934, 2014.
  30. R. Raman and S. Ray. Constructing planar support for non-piercing regions. Discret. Comput. Geom., 64(3):1098–1122, 2020.
  31. B. Sudakov. Recent developments in extremal combinatorics: Ramsey and Turán type problems. In Proceedings of the International Congress of Mathematicians. Volume IV, pages 2579–2606, 2010.
  32. I. Tomon. Coloring lines and delaunay graphs with respect to boxes. Random Structures & Algorithms, 2023.
  33. I. Tomon and D. Zakharov. Turán-type results for intersection graphs of boxes. Comb. Probab. Comput., 30(6):982–987, 2021.

Summary

We haven't generated a summary for this paper yet.