Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Residual Policy Learning for Perceptive Quadruped Control Using Differentiable Simulation (2410.03076v1)

Published 4 Oct 2024 in cs.RO

Abstract: First-order Policy Gradient (FoPG) algorithms such as Backpropagation through Time and Analytical Policy Gradients leverage local simulation physics to accelerate policy search, significantly improving sample efficiency in robot control compared to standard model-free reinforcement learning. However, FoPG algorithms can exhibit poor learning dynamics in contact-rich tasks like locomotion. Previous approaches address this issue by alleviating contact dynamics via algorithmic or simulation innovations. In contrast, we propose guiding the policy search by learning a residual over a simple baseline policy. For quadruped locomotion, we find that the role of residual policy learning in FoPG-based training (FoPG RPL) is primarily to improve asymptotic rewards, compared to improving sample efficiency for model-free RL. Additionally, we provide insights on applying FoPG's to pixel-based local navigation, training a point-mass robot to convergence within seconds. Finally, we showcase the versatility of FoPG RPL by using it to train locomotion and perceptive navigation end-to-end on a quadruped in minutes.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube