Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
462 tokens/sec
Kimi K2 via Groq Premium
254 tokens/sec
2000 character limit reached

Extracting Training Data from Unconditional Diffusion Models (2410.02467v6)

Published 3 Oct 2024 in cs.LG, cs.CR, and cs.CV

Abstract: As diffusion probabilistic models (DPMs) are being employed as mainstream models for Generative Artificial Intelligence (GenAI), the study of their memorization has attracted growing attention. Existing works in this field aim to establish an understanding of whether or to what extent DPMs learn via memorization. Such an understanding is crucial for identifying potential risks of data leakage and copyright infringement in diffusion models and, more importantly, for trustworthy application of GenAI. Existing works revealed that conditional DPMs are more prone to memorize training data than unconditional DPMs. And most data extraction methods developed so far target conditional DPMs. Although unconditional DPMs are less prone to data extraction, further investigation into these attacks remains essential since they serve as the foundation for conditional models like Stable Diffusion, and exploring these attacks will enhance our understanding of memorization in DPMs. In this work, we propose a novel data extraction method named \textbf{Surrogate condItional Data Extraction (SIDE)} that leverages a time-dependent classifier trained on generated data as surrogate conditions to extract training data from unconditional DPMs. Empirical results demonstrate that it can extract training data in challenging scenarios where previous methods fail, and it is, on average, over 50\% more effective across different scales of the CelebA dataset. Furthermore, we provide a theoretical understanding of memorization in both conditional and unconditional DPMs and why SIDE is effective.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.