On inf-sup stability and optimal convergence of the quasi-reversibility method for unique continuation subject to Poisson's equation (2409.20448v1)
Abstract: In this paper, we develop a framework for the discretization of a mixed formulation of quasi-reversibility solutions to ill-posed problems with respect to Poisson's equations. By carefully choosing test and trial spaces a formulation that is stable in a certain residual norm is obtained. Numerical stability and optimal convergence are established based on the conditional stability property of the problem. Tikhonov regularisation is necessary for high order polynomial approximation, , but its weak consistency may be tuned to allow for optimal convergence. For low order elements a simple numerical scheme with optimal convergence is obtained without stabilization. We also provide a guideline for feasible pairs of finite element spaces that satisfy suitable stability and consistency assumptions. Numerical experiments are provided to illustrate the theoretical results.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.