Optimal finite element approximation of unique continuation (2311.07440v2)
Abstract: We consider finite element approximations of ill-posed elliptic problems with conditional stability. The notion of {\emph{optimal error estimates}} is defined including both convergence with respect to mesh parameter and perturbations in data. The rate of convergence is determined by the conditional stability of the underlying continuous problem and the polynomial order of the finite element approximation space. A proof is given that no finite element approximation can converge at a better rate than that given by the definition, justifying the concept. A recently introduced class of finite element methods with weakly consistent regularisation is recalled and the associated error estimates are shown to be quasi optimal in the sense of our definition.
- Inverse Problems 25(12), 123004, 47 (2009). DOIÂ 10.1088/0266-5611/25/12/123004. URL https://doi.org/10.1088/0266-5611/25/12/123004
- Preprint arXiv 2107.14248
- Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1970/71). DOI 10.1007/BF02165003. URL https://doi.org/10.1007/BF02165003
- Bernardi, C.: Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26(5), 1212–1240 (1989). DOI 10.1137/0726068. URL https://doi.org/10.1137/0726068
- Inverse Problems 36(8), 085003–85024 (2020). DOI 10.1088/1361-6420/ab9161. URL https://doi.org/10.1088/1361-6420/ab9161
- Bourgeois, L.: A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation. Inverse Problems 21(3), 1087–1104 (2005). DOI 10.1088/0266-5611/21/3/018. URL https://doi.org/10.1088/0266-5611/21/3/018
- ESAIM Math. Model. Numer. Anal. 52(1), 123–145 (2018). DOI 10.1051/m2an/2018008. URL https://doi.org/10.1051/m2an/2018008
- Brummelhuis, R.: Three-spheres theorem for second order elliptic equations. Journal d’Analyse Mathematique 65(1), 179–206 (1995)
- SIAM J. Sci. Comput. 35(6), A2752–A2780 (2013). DOI 10.1137/130916862. URL http://dx.doi.org/10.1137/130916862
- Burman, E.: Error estimates for stabilized finite element methods applied to ill-posed problems. C. R. Math. Acad. Sci. Paris 352(7-8), 655–659 (2014). DOI 10.1016/j.crma.2014.06.008. URL http://dx.doi.org/10.1016/j.crma.2014.06.008
- Burman, E.: Stabilised finite element methods for ill-posed problems with conditional stability. In: Building bridges: connections and challenges in modern approaches to numerical partial differential equations, Lect. Notes Comput. Sci. Eng., vol. 114, pp. 93–127. Springer, [Cham] (2016)
- Math. Comp. 89(324), 1681–1709 (2020). DOI 10.1090/mcom/3508. URL https://doi.org/10.1090/mcom/3508
- Math. Comp. 87(311), 1029–1050 (2018). DOI 10.1090/mcom/3255. URL https://doi.org/10.1090/mcom/3255
- Inverse Problems 34(3), 035004, 36 (2018). DOIÂ 10.1088/1361-6420/aaa32b. URL https://doi.org/10.1088/1361-6420/aaa32b
- SIAM J. Numer. Anal. 56(6), 3480–3509 (2018). DOI 10.1137/17M1163335. URL https://doi.org/10.1137/17M1163335
- J. Math. Pures Appl. (9) 129, 1–22 (2019). DOI 10.1016/j.matpur.2018.10.003. URL https://doi.org/10.1016/j.matpur.2018.10.003
- Numer. Math. 144(3), 451–477 (2020). DOI 10.1007/s00211-019-01087-x. URL https://doi.org/10.1007/s00211-019-01087-x
- Numer. Math. 139(3), 505–528 (2018). DOI 10.1007/s00211-018-0949-3. URL https://doi.org/10.1007/s00211-018-0949-3
- Preprint arXiv 2305.06800
- Céa, J.: Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier (Grenoble) 14(fasc. 2), 345–444 (1964)
- ESAIM Math. Model. Numer. Anal. 57(4), 2227–2255 (2023). DOI 10.1051/m2an/2023050. URL https://doi.org/10.1051/m2an/2023050
- Engl, H.W.: Regularization by least-squares collocation. In: Numerical treatment of inverse problems in differential and integral equations (Heidelberg, 1982), Progr. Sci. Comput., vol. 2, pp. 345–354. Birkhäuser Boston, Boston, MA (1983)
- In: Model optimization in exploration geophysics (Berlin, 1986), Theory Practice Appl. Geophys., vol. 1, pp. 73–92. Friedr. Vieweg, Braunschweig (1987)
- Proc. Amer. Math. Soc. 102(3), 587–592 (1988). DOI 10.2307/2047228. URL https://doi.org/10.2307/2047228
- Appl. Anal. 85(1-3), 205–223 (2006). DOI 10.1080/00036810500277082. URL https://doi.org/10.1080/00036810500277082
- Math. Model. Anal. 7(2), 241–252 (2002)
- Helfrich, H.P.: Optimale lineare Approximation beschränkter Mengen in normierten Räumen. J. Approximation Theory 4, 165–182 (1971). DOI 10.1016/0021-9045(71)90027-x. URL https://doi.org/10.1016/0021-9045(71)90027-x
- World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2015). Tikhonov theory and algorithms
- John, F.: Continuous dependence on data for solutions of partial differential equations with a prescribed bound. Comm. Pure Appl. Math. 13, 551–585 (1960)
- Kaltenbacher, B.: Regularization by projection with a posteriori discretization level choice for linear and nonlinear ill-posed problems. Inverse Problems 16(5), 1523–1539 (2000). DOI 10.1088/0266-5611/16/5/322. URL https://doi.org/10.1088/0266-5611/16/5/322
- Translated from the French edition and edited by Richard Bellman. Modern Analytic and Computational Methods in Science and Mathematics, No. 18. American Elsevier Publishing Co., Inc., New York (1969)
- In: Contributions to the theory of partial differential equations, Annals of Mathematics Studies, no. 33, pp. 167–190. Princeton University Press, Princeton, N. J. (1954)
- Duke Math. J. 155(1), 189–204 (2010). DOI 10.1215/00127094-2010-054. URL https://doi.org/10.1215/00127094-2010-054
- Discrete Contin. Dyn. Syst. 28(3), 1273–1290 (2010). DOI 10.3934/dcds.2010.28.1273. URL https://doi.org/10.3934/dcds.2010.28.1273
- Lukas, M.A.: Convergence rates for regularized solutions. Math. Comp. 51(183), 107–131 (1988). DOI 10.2307/2008582. URL https://doi.org/10.2307/2008582
- SIAM J. Numer. Anal. 38(6), 1999–2021 (2001). DOI 10.1137/S003614299936175X. URL https://doi.org/10.1137/S003614299936175X
- Miller, K.: Three circle theorems in partial differential equations and applications to improperly posed problems. Ph.D. thesis, Rice University (1962)
- Miller, K.: Stabilized quasi-reversibility and other nearly-best-possible methods for non-well-posed problems. In: Symposium on Non-Well-Posed Problems and Logarithmic Convexity (Heriot-Watt Univ., Edinburgh, 1972), pp. 161–176. Lecture Notes in Math., Vol. 316 (1973)
- IMA Journal of Numerical Analysis 42(2), 981–1022 (2022). DOI 10.1093/imanum/drab032. URL https://doi.org/10.1093/imanum/drab032
- SIAM J. Numer. Anal. 36(1), 251–274 (1999). DOI 10.1137/S0036142997315172. URL http://dx.doi.org/10.1137/S0036142997315172
- Natterer, F.: The finite element method for ill-posed problems. RAIRO Anal. Numér. 11(3), 271–278 (1977). DOI 10.1051/m2an/1977110302711. URL https://doi.org/10.1051/m2an/1977110302711
- Natterer, F.: Regularisierung schlecht gestellter Probleme durch Projektionsverfahren. Numer. Math. 28(3), 329–341 (1977). DOI 10.1007/BF01389972. URL https://doi.org/10.1007/BF01389972
- Natterer, F.: Error bounds for Tikhonov regularization in Hilbert scales. Applicable Anal. 18(1-2), 29–37 (1984). DOI 10.1080/00036818408839508. URL https://doi.org/10.1080/00036818408839508
- Nitsche, J.: Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme. Arch. Rational Mech. Anal. 36, 348–355 (1970). DOI 10.1007/BF00282271. URL https://doi.org/10.1007/BF00282271
- V. H. Winston & Sons, Washington, D.C.: John Wiley & Sons, New York-Toronto, Ont.-London (1977). Translated from the Russian, Preface by translation editor Fritz John, Scripta Series in Mathematics
- Trefethen, L.N.: Quantifying the ill-conditioning of analytic continuation. BIT Numerical Mathematics 60(4), 901–915 (2020). DOI 10.1007/s10543-020-00802-7. URL https://doi.org/10.1007/s10543-020-00802-7
- Trefethen, L.N.: Numerical analytic continuation. Japan Journal of Industrial and Applied Mathematics 40(3), 1587–1636 (2023). DOI 10.1007/s13160-023-00599-2. URL https://doi.org/10.1007/s13160-023-00599-2
- Zlámal, M.: On the finite element method. Numer. Math. 12, 394–409 (1968). DOI 10.1007/BF02161362. URL https://doi.org/10.1007/BF02161362
- Zlámal, M.: Curved elements in the finite element method. I. SIAM J. Numer. Anal. 10, 229–240 (1973). DOI 10.1137/0710022. URL https://doi.org/10.1137/0710022
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.