Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

CaΣoS: A nonlinear sum-of-squares optimization suite (2409.18549v2)

Published 27 Sep 2024 in math.OC, cs.SY, and eess.SY

Abstract: We present Ca$\Sigma$oS, the first MATLAB software specifically designed for nonlinear sum-of-squares optimization. A symbolic polynomial algebra system allows to formulate parametrized sum-of-squares optimization problems and facilitates their fast, repeated evaluations. To that extent, we make use of CasADi's symbolic framework and realize concepts of monomial sparsity, linear operators (including duals), and functions between polynomials. Ca$\Sigma$oS currently provides interfaces to the conic solvers SeDuMi, Mosek, and SCS as well as methods to solve quasiconvex optimization problems (via bisection) and nonconvex optimization problems (via sequential convexification). Numerical examples for benchmark problems including region-of-attraction and reachable set estimation for nonlinear dynamic systems demonstrate significant improvements in computation time compared to existing toolboxes. Ca$\Sigma$oS is available open-source at https://github.com/ifr-acso/casos.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. P. A. Parillo, “Semidefinite programming relaxations for semialgebraic problems,” Mathematical Programming, Series B, vol. 96, no. 2, pp. 293–320, 2003.
  2. A. Chakraborty, P. Seiler, and G. J. Balas, “Nonlinear region of attraction analysis for flight control verification and validation,” Control Engineering Practice, vol. 19, no. 4, pp. 335–345, 2011.
  3. C. Ebenbauer and F. Allg, “Analysis and design of polynomial control systems using dissipation inequalities and sum of squares,” vol. 30, pp. 1590–1602, 2006.
  4. Z. Jarvis-Wloszek, R. Feeley, W. Tan, K. Sun, and A. Packard, “Some Controls Applications of Sum of Squares Programming,” in Proceedings of the IEEE Conference on Decision and Control, vol. 5, Maui, US-HI, 2003, pp. 4676–4681.
  5. H. Yin, P. Seiler, and M. Arcak, “Backward Reachability Using Integral Quadratic Constraints for Uncertain Nonlinear Systems,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 707–712, 2021.
  6. W. Tan, “Nonlinear Control Analysis and Synthesis using Sum-of-Squares Programming,” Ph.D. dissertation, University of California, Berkeley, Berkeley, US-CA, 2006.
  7. S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using barrier certificates,” in Hybrid Systems: Computation and Control, R. Alur and G. J. Pappas, Eds.   Springer, pp. 477–492.
  8. W. Tan and A. Packard, “Searching for control lyapunov functions using sums of squares programming.”
  9. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control Barrier Functions: Theory and Applications,” in 18th European Control Conference, Naples, IT, 2019, pp. 3420–3431.
  10. A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, P. Parrilo, M. M. Peet, and D. Jagt, “SOSTOOLS Version 4.00 Sum of Squares Optimization Toolbox for MATLAB,” Tech. Rep., 2021. [Online]. Available: https://github.com/oxfordcontrol/sostools
  11. M. M. Tobenkin, F. Permenter, and A. Megretski, “SPOTless: Polynomial and Conic Optimization,” 2013. [Online]. Available: https://github.com/spot-toolbox/spotless
  12. J. Löfberg, “Pre- and Post-Processing Sum-of-Squares Programs in Practice,” IEEE Transactions on Automatic Control, vol. 54, no. 5, pp. 1007–1011, 2009.
  13. P. Seiler, “SOSOPT: A Toolbox for Polynomial Optimization,” Minneapolis, MN, 2010. [Online]. Available: https://github.com/SOSAnalysis/sosopt
  14. E. D. Andersen and K. D. Andersen, “The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm,” in High Performance Optimization, H. Frenk, K. Roos, T. Terlaky, and S. Zhang, Eds., Boston, MA, 2000.
  15. J. F. Sturm, “Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11, no. 1-4, pp. 625–653, 1999.
  16. B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, “Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding,” Journal of Optimization Theory and Applications, vol. 169, no. 3, pp. 1042–1068, 2016.
  17. T. Cunis and B. Legat, “Sequential sum-of-squares programming for analysis of nonlinear systems,” in 2023 American Control Conference, San Diego, CA, 2023, pp. 756–762.
  18. D. Jagt, S. Shivakumar, P. Seiler, and M. Peet, “Efficient Data Structures for Representation of Polynomial Optimization Problems: Implementation in SOSTOOLS,” IEEE Control Systems Letters, vol. 6, pp. 3493–3498, 2022.
  19. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, M. Diehl, J. A. E. Andersson, J. Gillis, J. B. Rawlings, and M. Diehl, “CasADi-A software framework for nonlinear optimization and optimal control,” Tech. Rep.
  20. A. A. Ahmadi and A. Majumdar, “DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization,” SIAM Journal on Applied Algebra and Geometry, vol. 3, no. 2, pp. 193–230, 2019.
  21. P. Parrilo and B. Sturmfels, “Minimizing polynomial functions,” in Algorithmic and quantitative real algebraic geometry, ser. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, S. Basu and L. Gonzalez-Vega, Eds.   Providence, RI: American Mathematical Society, 2003, vol. 60, pp. 83–99.
  22. J. B. Lasserre, “Global Optimization with Polynomials and the Problem of Moments,” SIAM Journal on Optimization, vol. 11, no. 3, pp. 796–817, 2001.
  23. W. S. Dorn, “Duality in quadratic programming,” Quarterly of Applied Mathematics, vol. 18, no. 2, pp. 155–162, 1960.
  24. P. Seiler and G. J. Balas, “Quasiconvex sum-of-squares programming,” in 49th IEEE Conference on Decision and Control, Atlanta, US-GA, 2010, pp. 3337–3342.
  25. A. Agrawal and S. Boyd, “Disciplined quasiconvex programming,” Optimization Letters, vol. 14, no. 7, pp. 1643–1657, 2020.
  26. A. Chakraborty, P. Seiler, and G. J. Balas, “Susceptibility of F/A-18 Flight Controllers to the Falling-leaf Mode: Nonlinear Analysis,” Journal of Guidance, Control, and Dynamics, vol. 34, no. 2, pp. 73–85, 2011.
  27. P. Seiler, “Multipoly: A toolbox for multivariable polynomials version 2.00.” [Online]. Available: https://dept.aem.umn.edu/~AerospaceControl/
  28. M. Lubin, O. Dowson, J. Dias Garcia, J. Huchette, B. Legat, and J. P. Vielma, “JuMP 1.0: Recent improvements to a modeling language for mathematical optimization,” Mathematical Programming Computation, 2023.
  29. T. Cunis and J. Olucak, “Implementation details and source code for CaΣΣ\Sigmaroman_ΣoS: A nonlinear sum-of-squares optimization suite,” 2024. [Online]. Available: https://doi.org/10.18419/darus-4499
  30. J. A. T. Machado and A. M. Lopes, “The n-link pendulum: Embedding nonlinear dynamics into the multidimensional scaling method,” vol. 89, pp. 130–138.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com