Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Block Factor-width-two Matrices and Their Applications to Semidefinite and Sum-of-squares Optimization (1909.11076v3)

Published 24 Sep 2019 in math.OC, cs.SY, and eess.SY

Abstract: Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In this paper, we introduce a new notion of block factor-width-two matrices and build a new hierarchy of inner and outer approximations of the cone of positive semidefinite (PSD) matrices. This notion is a block extension of the standard factor-width-two matrices, and allows for an improved inner-approximation of the PSD cone. In the context of SOS optimization, this leads to a block extension of the scaled diagonally dominant sum-of-squares (SDSOS) polynomials. By varying a matrix partition, the notion of block factor-width-two matrices can balance a trade-off between the computation scalability and solution quality for solving semidefinite and SOS optimization problems. Numerical experiments on a range of large-scale instances confirm our theoretical findings.

Citations (8)

Summary

We haven't generated a summary for this paper yet.