Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SLO-Aware Task Offloading within Collaborative Vehicle Platoons (2409.17667v1)

Published 26 Sep 2024 in cs.DC

Abstract: In the context of autonomous vehicles (AVs), offloading is essential for guaranteeing the execution of perception tasks, e.g., mobile mapping or object detection. While existing work focused extensively on minimizing inter-vehicle networking latency through offloading, other objectives become relevant in the case of vehicle platoons, e.g., energy efficiency or data quality for heavy-duty or public transport. Therefore, we aim to enforce these Service Level Objectives (SLOs) through intelligent task offloading within AV platoons. We present a collaborative framework for handling and offloading services in a purely Vehicle-to-Vehicle approach (V2V) based on Bayesian Networks (BNs). Each service aggregates local observations into a platoon-wide understanding of how to ensure SLOs for heterogeneous vehicle types. With the resulting models, services can proactively decide to offload if this promises to improve global SLO fulfillment. We evaluate the approach in a real-case setting, where vehicles in a platoon continuously (i.e., every 500 ms) interpret the SLOs of three actual perception services. Our probabilistic, predictive method shows promising results in handling large AV platoons; within seconds, it detects and resolves SLO violations through offloading.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: