Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Delay-Effective Task Offloading Technology in Internet of Vehicles: From the Perspective of the Vehicle Platooning (2405.16060v1)

Published 25 May 2024 in cs.IT and math.IT

Abstract: The task offloading technology plays a crucial vital role in the Internet of Vehicle (IoV) with the demands of delay minimum, by jointly optimizing the heterogeneous computing resources supported by the vehicles, roadside units (RSUs), and macro base stations (MBSs). In previous works, on the one hand, they ignored the wireless interference among the exchange and sharing of the task data. On the other hand, the available resources supported by the vehicles that have similar driving behaviors, which can form a vehicle platooning (VEH-PLA) and effectively integrate the resources of individual vehicle, has not been addressed. In addition, as a novel resource management paradigm, the VEH-PLA should consider the task categorization, since vehicles in VEH-PLA may have the same task offloading requests, which also has not attracted enough attention. In this paper, considering the wireless interference, mobility, VEH-PLA, and task categorization, we propose four kinds of task offloading models for the purpose of the processing delay minimum. Furthermore, by utilizing centralized training and decentralized execution (CTDE) based on multi-agent deep reinforcement learning (MADRL), we present a task offloading decision-making method to find the global optimal offloading decision, resulting in a significant enhancement in the load balancing of resources and processing delay. Finally, the simulations demonstrate that the proposed method significantly outperforms traditional task offloading methods in terms of the processing delay minimum while keeping the resource load balancing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. B. Hazarika, K. Singh, S. Biswas, and C.-P. Li, “Drl-based resource allocation for computation offloading in iov networks,” IEEE Transactions on Industrial Informatics, vol. 18, no. 11, pp. 8027–8038, 2022.
  2. X. He, H. Lu, M. Du, Y. Mao, and K. Wang, “Qoe-based task offloading with deep reinforcement learning in edge-enabled internet of vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 4, pp. 2252–2261, 2021.
  3. X. Hou, Z. Ren, J. Wang, W. Cheng, Y. Ren, K.-C. Chen, and H. Zhang, “Reliable computation offloading for edge-computing-enabled software-defined iov,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7097–7111, 2020.
  4. X. Song, B. Xu, X. Zhang, S. Wang, T. Song, G. Xing, and F. Liu, “Everyone-centric heterogeneous multi-server computation offloading in its with pervasive ai,” IEEE Network, vol. 37, no. 2, pp. 62–68, 2023.
  5. Y. Sun, Z. Wu, K. Meng, and Y. Zheng, “Vehicular task offloading and job scheduling method based on cloud-edge computing,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 12, pp. 14 651–14 662, 2023.
  6. Q. Luo, C. Li, T. H. Luan, and W. Shi, “Collaborative data scheduling for vehicular edge computing via deep reinforcement learning,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9637–9650, 2020.
  7. C. Sonmez, C. Tunca, A. Ozgovde, and C. Ersoy, “Machine learning-based workload orchestrator for vehicular edge computing,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 4, pp. 2239–2251, 2021.
  8. Y. Cui, H. Li, D. Zhang, A. Zhu, Y. Li, and H. Qiang, “Multiagent reinforcement learning-based cooperative multitype task offloading strategy for internet of vehicles in b5g/6g network,” IEEE Internet of Things Journal, vol. 10, no. 14, pp. 12 248–12 260, 2023.
  9. G. Qiao, S. Leng, K. Zhang, and Y. He, “Collaborative task offloading in vehicular edge multi-access networks,” IEEE Communications Magazine, vol. 56, no. 8, pp. 48–54, 2018.
  10. K. Xiong, S. Leng, C. Huang, C. Yuen, and Y. L. Guan, “Intelligent task offloading for heterogeneous v2x communications,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 4, pp. 2226–2238, 2021.
  11. X. Huang, L. He, X. Chen, L. Wang, and F. Li, “Revenue and energy efficiency-driven delay-constrained computing task offloading and resource allocation in a vehicular edge computing network: A deep reinforcement learning approach,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8852–8868, 2022.
  12. J. Lin, S. Huang, H. Zhang, X. Yang, and P. Zhao, “A deep-reinforcement-learning-based computation offloading with mobile vehicles in vehicular edge computing,” IEEE Internet of Things Journal, vol. 10, no. 17, pp. 15 501–15 514, 2023.
  13. T. Xiao, C. Chen, Q. Pei, and H. H. Song, “Consortium blockchain-based computation offloading using mobile edge platoon cloud in internet of vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 17 769–17 783, 2022.
  14. T. Xiao, C. Chen, and S. Wan, “Mobile-edge-platooning cloud: A lightweight cloud in vehicular networks,” IEEE Wireless Communications, vol. 29, no. 3, pp. 87–94, 2022.
  15. D. Zheng, Y. Chen, L. Wei, B. Jiao, and L. Hanzo, “Dynamic noma-based computation offloading in vehicular platoons,” IEEE Transactions on Vehicular Technology, vol. 72, no. 10, pp. 13 000–13 010, 2023.
  16. C. Yang, W. Lou, Y. Liu, and S. Xie, “Resource allocation for edge computing-based vehicle platoon on freeway: A contract-optimization approach,” IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 15 988–16 000, 2020.
  17. X. Ma, J. Zhao, Q. Li, and Y. Gong, “Reinforcement learning based task offloading and take-back in vehicle platoon networks,” in 2019 IEEE International Conference on Communications Workshops (ICC Workshops), 2019, pp. 1–6.
  18. Z. Zhang and F. Zeng, “Efficient task allocation for computation offloading in vehicular edge computing,” IEEE Internet of Things Journal, vol. 10, no. 6, pp. 5595–5606, 2023.
  19. J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8, pp. 7944–7956, 2019.
  20. K. Yu, J. Yu, Z. Feng, and H. Chen, “A reassessment on applying protocol interference model under rayleigh fading: From perspective of link scheduling,” IEEE/ACM Transactions on Networking, vol. 32, no. 1, pp. 238–252, 2024.
  21. K. Yu, J. Yu, X. Cheng, D. Yu, and A. Dong, “Efficient link scheduling solutions for the internet of things under rayleigh fading,” IEEE/ACM Transactions on Networking, vol. 29, no. 6, pp. 2508–2521, 2021.
  22. Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Adaptive learning-based task offloading for vehicular edge computing systems,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3061–3074, 2019.
  23. K. Zhang, Y. Mao, S. Leng, A. Vinel, and Y. Zhang, “Delay constrained offloading for mobile edge computing in cloud-enabled vehicular networks,” in 2016 8th International Workshop on RNDM, 2016, pp. 288–294.
  24. X. Liu, Y. Wang, D. Chen, D. Li, and Z. Feng, “An multi-resources integration empowered task offloading in internet of vehicles,” IEEE Transactions on Communications, 2024, under review.
  25. W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, and Q. Zhu, “Deep-reinforcement-learning-based offloading scheduling for vehicular edge computing,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5449–5465, 2020.
  26. Z. Sun, H. Yang, C. Li, Q. Yao, D. Wang, J. Zhang, and A. V. Vasilakos, “Cloud-edge collaboration in industrial internet of things: A joint offloading scheme based on resource prediction,” IEEE Internet of Things Journal, vol. 9, no. 18, pp. 17 014–17 025, 2022.
  27. L. Zhu, Z. Zhang, L. Liu, L. Feng, P. Lin, and Y. Zhang, “Online distributed learning-based load-aware heterogeneous vehicular edge computing,” IEEE Sensors Journal, vol. 23, no. 15, pp. 17 350–17 365, 2023.
  28. T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson, “Monotonic value function factorisation for deep multi-agent reinforcement learning,” Journal of Machine Learning Research, vol. 21, no. 178, pp. 1–51, 2020.
  29. A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and R. Vicente, “Multiagent cooperation and competition with deep reinforcement learning,” PloS one, vol. 12, no. 4, p. e0172395, 2017.
  30. Z. Zhou, J. Feng, Z. Chang, and X. Shen, “Energy-efficient edge computing service provisioning for vehicular networks: A consensus admm approach,” IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 5087–5099, 2019.
  31. H. Liao, Z. Zhou, W. Kong, Y. Chen, X. Wang, Z. Wang, and S. Al Otaibi, “Learning-based intent-aware task offloading for air-ground integrated vehicular edge computing,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp. 5127–5139, 2021.
  32. X. Ge, Q.-L. Han, Q. Wu, and X.-M. Zhang, “Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp. 1234–1251, 2023.
  33. X. Ge, Q.-L. Han, X.-M. Zhang, and D. Ding, “Communication resource-efficient vehicle platooning control with various spacing policies,” IEEE/CAA Journal of Automatica Sinica, vol. 11, no. 2, pp. 362–376, 2024.

Summary

We haven't generated a summary for this paper yet.