Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Schrödinger bridge based deep conditional generative learning (2409.17294v1)

Published 25 Sep 2024 in stat.ML and cs.LG

Abstract: Conditional generative models represent a significant advancement in the field of machine learning, allowing for the controlled synthesis of data by incorporating additional information into the generation process. In this work we introduce a novel Schr\"odinger bridge based deep generative method for learning conditional distributions. We start from a unit-time diffusion process governed by a stochastic differential equation (SDE) that transforms a fixed point at time $0$ into a desired target conditional distribution at time $1$. For effective implementation, we discretize the SDE with Euler-Maruyama method where we estimate the drift term nonparametrically using a deep neural network. We apply our method to both low-dimensional and high-dimensional conditional generation problems. The numerical studies demonstrate that though our method does not directly provide the conditional density estimation, the samples generated by this method exhibit higher quality compared to those obtained by several existing methods. Moreover, the generated samples can be effectively utilized to estimate the conditional density and related statistical quantities, such as conditional mean and conditional standard deviation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.