Papers
Topics
Authors
Recent
2000 character limit reached

Localized Schrödinger Bridge Sampler

Published 12 Sep 2024 in stat.ML, cs.LG, cs.NA, math.NA, and stat.CO | (2409.07968v3)

Abstract: We consider the problem of sampling from an unknown distribution for which only a sufficiently large number of training samples are available. In this paper, we build on previous work combining Schr\"odinger bridges and plug & play Langevin samplers. A key bottleneck of these approaches is the exponential dependence of the required training samples on the dimension, $d$, of the ambient state space. We propose a localization strategy which exploits conditional independence of conditional expectation values. Localization thus replaces a single high-dimensional Schr\"odinger bridge problem by $d$ low-dimensional Schr\"odinger bridge problems over the available training samples. In this context, a connection to multi-head self attention transformer architectures is established. As for the original Schr\"odinger bridge sampling approach, the localized sampler is stable and geometric ergodic. The sampler also naturally extends to conditional sampling and to Bayesian inference. We demonstrate the performance of our proposed scheme through experiments on a high-dimensional Gaussian problem, on a temporal stochastic process, and on a stochastic subgrid-scale parametrization conditional sampling problem. We also extend the idea of localization to plug & play Langevin samplers using kernel-based denoising in combination with Tweedie's formula.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.