Papers
Topics
Authors
Recent
2000 character limit reached

HELIOT: LLM-Based CDSS for Adverse Drug Reaction Management (2409.16395v2)

Published 24 Sep 2024 in cs.AI

Abstract: Medication errors significantly threaten patient safety, leading to adverse drug events and substantial economic burdens on healthcare systems. Clinical Decision Support Systems (CDSSs) aimed at mitigating these errors often face limitations when processing unstructured clinical data, including reliance on static databases and rule-based algorithms, frequently generating excessive alerts that lead to alert fatigue among healthcare providers. This paper introduces HELIOT, an innovative CDSS for adverse drug reaction management that processes free-text clinical information using LLMs integrated with a comprehensive pharmaceutical data repository. HELIOT leverages advanced natural language processing capabilities to interpret medical narratives, extract relevant drug reaction information from unstructured clinical notes, and learn from past patient-specific medication tolerances to reduce false alerts, enabling more nuanced and contextual adverse drug event warnings across primary care, specialist consultations, and hospital settings. An initial evaluation using a synthetic dataset of clinical narratives and expert-verified ground truth shows promising results. HELIOT achieves high accuracy in a controlled setting. In addition, by intelligently analyzing previous medication tolerance documented in clinical notes and distinguishing between cases requiring different alert types, HELIOT can potentially reduce interruptive alerts by over 50% compared to traditional CDSSs. While these preliminary findings are encouraging, real-world validation will be essential to confirm these benefits in clinical practice.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube