Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Development and Testing of a Novel Large Language Model-Based Clinical Decision Support Systems for Medication Safety in 12 Clinical Specialties (2402.01741v2)

Published 29 Jan 2024 in cs.CL and cs.AI

Abstract: Importance: We introduce a novel Retrieval Augmented Generation (RAG)-LLM framework as a Clinical Decision Support Systems (CDSS) to support safe medication prescription. Objective: To evaluate the efficacy of LLM-based CDSS in correctly identifying medication errors in different patient case vignettes from diverse medical and surgical sub-disciplines, against a human expert panel derived ground truth. We compared performance for under 2 different CDSS practical healthcare integration modalities: LLM-based CDSS alone (fully autonomous mode) vs junior pharmacist + LLM-based CDSS (co-pilot, assistive mode). Design, Setting, and Participants: Utilizing a RAG model with state-of-the-art medically-related LLMs (GPT-4, Gemini Pro 1.0 and Med-PaLM 2), this study used 61 prescribing error scenarios embedded into 23 complex clinical vignettes across 12 different medical and surgical specialties. A multidisciplinary expert panel assessed these cases for Drug-Related Problems (DRPs) using the PCNE classification and graded severity / potential for harm using revised NCC MERP medication error index. We compared. Results RAG-LLM performed better compared to LLM alone. When employed in a co-pilot mode, accuracy, recall, and F1 scores were optimized, indicating effectiveness in identifying moderate to severe DRPs. The accuracy of DRP detection with RAG-LLM improved in several categories but at the expense of lower precision. Conclusions This study established that a RAG-LLM based CDSS significantly boosts the accuracy of medication error identification when used alongside junior pharmacists (co-pilot), with notable improvements in detecting severe DRPs. This study also illuminates the comparative performance of current state-of-the-art LLMs in RAG-based CDSS systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (16)
  1. Jasmine Chiat Ling Ong (10 papers)
  2. Liyuan Jin (6 papers)
  3. Kabilan Elangovan (7 papers)
  4. Gilbert Yong San Lim (1 paper)
  5. Daniel Yan Zheng Lim (1 paper)
  6. Gerald Gui Ren Sng (1 paper)
  7. Joshua Yi Min Tung (3 papers)
  8. Ryan Jian Zhong (2 papers)
  9. Christopher Ming Yao Koh (1 paper)
  10. Keane Zhi Hao Lee (1 paper)
  11. Xiang Chen (343 papers)
  12. Jack Kian Chng (1 paper)
  13. Aung Than (1 paper)
  14. Ken Junyang Goh (1 paper)
  15. Daniel Shu Wei Ting (17 papers)
  16. YuHe Ke (9 papers)
Citations (2)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets