Papers
Topics
Authors
Recent
2000 character limit reached

Autotuning Bipedal Locomotion MPC with GRFM-Net for Efficient Sim-to-Real Transfer (2409.15710v1)

Published 24 Sep 2024 in cs.RO, cs.AI, cs.SY, and eess.SY

Abstract: Bipedal locomotion control is essential for humanoid robots to navigate complex, human-centric environments. While optimization-based control designs are popular for integrating sophisticated models of humanoid robots, they often require labor-intensive manual tuning. In this work, we address the challenges of parameter selection in bipedal locomotion control using DiffTune, a model-based autotuning method that leverages differential programming for efficient parameter learning. A major difficulty lies in balancing model fidelity with differentiability. We address this difficulty using a low-fidelity model for differentiability, enhanced by a Ground Reaction Force-and-Moment Network (GRFM-Net) to capture discrepancies between MPC commands and actual control effects. We validate the parameters learned by DiffTune with GRFM-Net in hardware experiments, which demonstrates the parameters' optimality in a multi-objective setting compared with baseline parameters, reducing the total loss by up to 40.5$\%$ compared with the expert-tuned parameters. The results confirm the GRFM-Net's effectiveness in mitigating the sim-to-real gap, improving the transferability of simulation-learned parameters to real hardware.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.