Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable Inertia Model Predictive Control for Fast Bipedal Maneuvers (2407.16811v2)

Published 23 Jul 2024 in cs.RO

Abstract: This paper proposes a novel control framework for agile and robust bipedal locomotion, addressing model discrepancies between full-body and reduced-order models. Specifically, assumptions such as constant centroidal inertia have introduced significant challenges and limitations in locomotion tasks. To enhance the agility and versatility of full-body humanoid robots, we formalize a Model Predictive Control (MPC) problem that accounts for the variable centroidal inertia of humanoid robots within a convex optimization framework, ensuring computational efficiency for real-time operations. In the proposed formulation, we incorporate a centroidal inertia network designed to predict the variable centroidal inertia over the MPC horizon, taking into account the swing foot trajectories -- an aspect often overlooked in ROM-based MPC frameworks. By integrating the MPC-based contact wrench planning with our low-level whole-body controller, we significantly improve the locomotion performance, achieving stable walking at higher velocities that are not attainable with the baseline method. The effectiveness of our proposed framework is validated through high-fidelity simulations using our full-body bipedal humanoid robot DRACO 3, demonstrating dynamic behaviors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. S. H. Bang, C. Gonzalez, J. Ahn, N. Paine, and L. Sentis, “Control and evaluation of a humanoid robot with rolling contact joints on its lower body,” Frontiers in Robotics and AI, vol. 10, no. October, pp. 1–21, 2023.
  2. D. E. Orin, A. Goswami, and S. H. Lee, “Centroidal dynamics of a humanoid robot,” Autonomous Robots, vol. 35, no. 2-3, pp. 161–176, 10 2013.
  3. J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control,” IEEE International Conference on Intelligent Robots and Systems, pp. 7440–7447, 2018.
  4. G. Bledt, P. M. Wensing, and S. Kim, “Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the MIT cheetah,” in IEEE International Conference on Intelligent Robots and Systems, vol. 2017-Septe.   Institute of Electrical and Electronics Engineers Inc., 12 2017, pp. 4102–4109.
  5. D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly Dynamic Quadruped Locomotion via Whole-Body Impulse Control and Model Predictive Control,” 2019. [Online]. Available: http://arxiv.org/abs/1909.06586
  6. G. García, R. Griffin, and J. Pratt, “MPC-based Locomotion Control of Bipedal Robots with Line-Feet Contact using Centroidal Dynamics,” IEEE-RAS International Conference on Humanoid Robots, vol. 2021-July, pp. 276–282, 2021.
  7. J. Li and Q. Nguyen, “Force-and-moment-based Model Predictive Control for Achieving Highly Dynamic Locomotion on Bipedal Robots,” in Proceedings of the IEEE Conference on Decision and Control, vol. 2021-Decem.   Institute of Electrical and Electronics Engineers Inc., 2021, pp. 1024–1030.
  8. G. Romualdi, S. Dafarra, G. L’Erario, I. Sorrentino, S. Traversaro, and D. Pucci, “Online Non-linear Centroidal MPC for Humanoid Robot Locomotion with Step Adjustment,” in Proceedings - IEEE International Conference on Robotics and Automation.   Institute of Electrical and Electronics Engineers Inc., 2022, pp. 10 412–10 419.
  9. Y. Ding, C. Khazoom, M. Chignoli, and S. Kim, “Orientation-Aware Model Predictive Control with Footstep Adaptation for Dynamic Humanoid Walking,” IEEE-RAS International Conference on Humanoid Robots, vol. 2022-Novem, pp. 299–305, 2022.
  10. L. Rossini, E. M. Hoffman, S. H. Bang, L. Sentis, and N. G. Tsagarakis, “A Real-Time Approach for Humanoid Robot Walking Including Dynamic Obstacles Avoidance,” IEEE-RAS International Conference on Humanoid Robots, pp. 1–8, 2023.
  11. K. Wang, G. Xin, S. Xin, M. Mistry, S. Vijayakumar, and P. Kormushev, “A Unified Model with Inertia Shaping for Highly Dynamic Jumps of Legged Robots,” 2021. [Online]. Available: http://arxiv.org/abs/2109.04581
  12. J. Ahn, S. J. Jorgensen, S. H. Bang, and L. Sentis, “Versatile Locomotion Planning and Control for Humanoid Robots,” Frontiers in Robotics and AI, vol. 8, 8 2021.
  13. Y.-M. Chen, M. Posa, J. E. Pratt, G. Nelson, R. Griffin, and J. Pratt, “Integrable Whole-body Orientation Coordinates for Legged Robots.” [Online]. Available: https://www.researchgate.net/publication/364442728
  14. S.-H. Lee and A. Goswami, “Reaction Mass Pendulum (RMP): An explicit model for centroidal angular momentum of humanoid robots,” in Proceedings 2007 IEEE International Conference on Robotics and Automation, no. April.   IEEE, 4 2007, pp. 4667–4672. [Online]. Available: http://ieeexplore.ieee.org/document/4209816/
  15. O. Villarreal, V. Barasuol, P. M. Wensing, D. G. Caldwell, and C. Semini, “MPC-based Controller with Terrain Insight for Dynamic Legged Locomotion,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 5 2020, pp. 2436–2442. [Online]. Available: https://ieeexplore.ieee.org/document/9197312/
  16. Z. Zhou, B. Wingo, N. Boyd, S. Hutchinson, and Y. Zhao, “Momentum-Aware Trajectory Optimization and Control for Agile Quadrupedal Locomotion,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7755–7762, 7 2022.
  17. G. Bledt, P. M. Wensing, S. Ingersoll, and S. Kim, “Contact Model Fusion for Event-Based Locomotion in Unstructured Terrains,” in Proceedings - IEEE International Conference on Robotics and Automation.   Institute of Electrical and Electronics Engineers Inc., 9 2018, pp. 4399–4406.
  18. M. H. Raibert, H. B. Brown, M. Chepponis, E. Hastings, J. Koechling, K. N. Murphy, S. S. Murthy, and A. J. Stentz, “Stable Locomotion,” Order A Journal On The Theory Of Ordered Sets And Its Applications, no. 4148, 1983.
  19. J. Pratt, T. Koolen, T. De Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson, and P. Neuhaus, “Capturability-based analysis and control of legged locomotion, Part 2: Application to M2V2, a lower-body humanoid,” International Journal of Robotics Research, vol. 31, no. 10, pp. 1117–1133, 9 2012.
  20. S. Caron, Q.-C. Pham, and Y. Nakamura, “Stability of surface contacts for humanoid robots: Closed-form formulae of the Contact Wrench Cone for rectangular support areas,” 2015, pp. 5107–5112. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02108449
  21. G. Frison and M. Diehl, “HPIPM: A high-performance quadratic programming framework for model predictive control,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6563–6569, 2020.
  22. E. Coumans and Y. Bai, “PyBullet, a Python module for physics simulation for games, robotics and machine learning,” 2016.
  23. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006. [Online]. Available: https://doi.org/10.1007/s10107-004-0559-y
  24. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi: a software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019. [Online]. Available: https://doi.org/10.1007/s12532-018-0139-4
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com