Don't Use LLMs to Make Relevance Judgments (2409.15133v2)
Abstract: Making the relevance judgments for a TREC-style test collection can be complex and expensive. A typical TREC track usually involves a team of six contractors working for 2-4 weeks. Those contractors need to be trained and monitored. Software has to be written to support recording relevance judgments correctly and efficiently. The recent advent of LLMs that produce astoundingly human-like flowing text output in response to a natural language prompt has inspired IR researchers to wonder how those models might be used in the relevance judgment collection process. At the ACM SIGIR 2024 conference, a workshop ``LLM4Eval'' provided a venue for this work, and featured a data challenge activity where participants reproduced TREC deep learning track judgments, as was done by Thomas et al (arXiv:2408.08896, arXiv:2309.10621). I was asked to give a keynote at the workshop, and this paper presents that keynote in article form. The bottom-line-up-front message is, don't use LLMs to create relevance judgments for TREC-style evaluations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.