Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

(De)-regularized Maximum Mean Discrepancy Gradient Flow (2409.14980v1)

Published 23 Sep 2024 in stat.ML and cs.LG

Abstract: We introduce a (de)-regularization of the Maximum Mean Discrepancy (DrMMD) and its Wasserstein gradient flow. Existing gradient flows that transport samples from source distribution to target distribution with only target samples, either lack tractable numerical implementation ($f$-divergence flows) or require strong assumptions, and modifications such as noise injection, to ensure convergence (Maximum Mean Discrepancy flows). In contrast, DrMMD flow can simultaneously (i) guarantee near-global convergence for a broad class of targets in both continuous and discrete time, and (ii) be implemented in closed form using only samples. The former is achieved by leveraging the connection between the DrMMD and the $\chi2$-divergence, while the latter comes by treating DrMMD as MMD with a de-regularized kernel. Our numerical scheme uses an adaptive de-regularization schedule throughout the flow to optimally trade off between discretization errors and deviations from the $\chi2$ regime. The potential application of the DrMMD flow is demonstrated across several numerical experiments, including a large-scale setting of training student/teacher networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: