Papers
Topics
Authors
Recent
2000 character limit reached

VLM's Eye Examination: Instruct and Inspect Visual Competency of Vision Language Models (2409.14759v1)

Published 23 Sep 2024 in cs.CV and cs.AI

Abstract: Vision LLMs (VLMs) have shown promising reasoning capabilities across various benchmarks; however, our understanding of their visual perception remains limited. In this work, we propose an eye examination process to investigate how a VLM perceives images, specifically focusing on key elements of visual recognition, from primitive color and shape to semantic levels. To this end, we introduce a dataset named LENS to guide a VLM to follow the examination and check its readiness. Once the model is ready, we conduct the examination. Through this examination, we quantify and visualize VLMs' sensitivities to color and shape, and semantic matching. Our findings reveal that VLMs have varying sensitivity to different colors while consistently showing insensitivity to green across different VLMs. Also, we found different shape sensitivity and semantic recognition depending on LLM's capacity despite using the same fixed visual encoder. Our analyses and findings have potential to inspire the design of VLMs and the pre-processing of visual input to VLMs for improving application performance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.