Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Implicit Dynamical Flow Fusion (IDFF) for Generative Modeling (2409.14599v4)

Published 22 Sep 2024 in cs.LG

Abstract: Conditional Flow Matching (CFM) models can generate high-quality samples from a non-informative prior, but they can be slow, often needing hundreds of network evaluations (NFE). To address this, we propose Implicit Dynamical Flow Fusion (IDFF); IDFF learns a new vector field with an additional momentum term that enables taking longer steps during sample generation while maintaining the fidelity of the generated distribution. Consequently, IDFFs reduce the NFEs by a factor of ten (relative to CFMs) without sacrificing sample quality, enabling rapid sampling and efficient handling of image and time-series data generation tasks. We evaluate IDFF on standard benchmarks such as CIFAR-10 and CelebA for image generation, where we achieve likelihood and quality performance comparable to CFMs and diffusion-based models with fewer NFEs. IDFF also shows superior performance on time-series datasets modeling, including molecular simulation and sea surface temperature (SST) datasets, highlighting its versatility and effectiveness across different domains.\href{https://github.com/MrRezaeiUofT/IDFF}{Github Repository}

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.