Papers
Topics
Authors
Recent
2000 character limit reached

Mitigating Exposure Bias in Score-Based Generation of Molecular Conformations (2409.14014v1)

Published 21 Sep 2024 in cs.LG, cs.AI, and q-bio.BM

Abstract: Molecular conformation generation poses a significant challenge in the field of computational chemistry. Recently, Diffusion Probabilistic Models (DPMs) and Score-Based Generative Models (SGMs) are effectively used due to their capacity for generating accurate conformations far beyond conventional physics-based approaches. However, the discrepancy between training and inference rises a critical problem known as the exposure bias. While this issue has been extensively investigated in DPMs, the existence of exposure bias in SGMs and its effective measurement remain unsolved, which hinders the use of compensation methods for SGMs, including ConfGF and Torsional Diffusion as the representatives. In this work, we first propose a method for measuring exposure bias in SGMs used for molecular conformation generation, which confirms the significant existence of exposure bias in these models and measures its value. We design a new compensation algorithm Input Perturbation (IP), which is adapted from a method originally designed for DPMs only. Experimental results show that by introducing IP, SGM-based molecular conformation models can significantly improve both the accuracy and diversity of the generated conformations. Especially by using the IP-enhanced Torsional Diffusion model, we achieve new state-of-the-art performance on the GEOM-Drugs dataset and are on par on GEOM-QM9. We provide the code publicly at https://github.com/jia-975/torsionalDiff-ip.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com