Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

SMART-RAG: Selection using Determinantal Matrices for Augmented Retrieval (2409.13992v1)

Published 21 Sep 2024 in cs.CL

Abstract: Retrieval-Augmented Generation (RAG) has greatly improved LLMs by enabling them to generate accurate, contextually grounded responses through the integration of external information. However, conventional RAG approaches, which prioritize top-ranked documents based solely on query-context relevance, often introduce redundancy and conflicting information. This issue is particularly evident in unsupervised retrieval settings, where there are no mechanisms to effectively mitigate these problems, leading to suboptimal context selection. To address this, we propose Selection using Matrices for Augmented Retrieval (SMART) in question answering tasks, a fully unsupervised and training-free framework designed to optimize context selection in RAG. SMART leverages Determinantal Point Processes (DPPs) to simultaneously model relevance, diversity and conflict, ensuring the selection of potentially high-quality contexts. Experimental results across multiple datasets demonstrate that SMART significantly enhances QA performance and surpasses previous unsupervised context selection methods, showing a promising strategy for RAG.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.