Papers
Topics
Authors
Recent
2000 character limit reached

Universal approximation theorem for neural networks with inputs from a topological vector space (2409.12913v1)

Published 19 Sep 2024 in cs.LG, cs.NE, and stat.ML

Abstract: We study feedforward neural networks with inputs from a topological vector space (TVS-FNNs). Unlike traditional feedforward neural networks, TVS-FNNs can process a broader range of inputs, including sequences, matrices, functions and more. We prove a universal approximation theorem for TVS-FNNs, which demonstrates their capacity to approximate any continuous function defined on this expanded input space.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.