Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the approximation by single hidden layer feedforward neural networks with fixed weights (1708.06219v1)

Published 21 Aug 2017 in cs.NE, cs.IT, math.IT, and math.NA

Abstract: Feedforward neural networks have wide applicability in various disciplines of science due to their universal approximation property. Some authors have shown that single hidden layer feedforward neural networks (SLFNs) with fixed weights still possess the universal approximation property provided that approximated functions are univariate. But this phenomenon does not lay any restrictions on the number of neurons in the hidden layer. The more this number, the more the probability of the considered network to give precise results. In this note, we constructively prove that SLFNs with the fixed weight $1$ and two neurons in the hidden layer can approximate any continuous function on a compact subset of the real line. The applicability of this result is demonstrated in various numerical examples. Finally, we show that SLFNs with fixed weights cannot approximate all continuous multivariate functions.

Citations (108)

Summary

We haven't generated a summary for this paper yet.