Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Lexicon-Based Sentiment Analysis on Text Polarities with Evaluation of Classification Models (2409.12840v1)

Published 19 Sep 2024 in cs.CL

Abstract: Sentiment analysis possesses the potential of diverse applicability on digital platforms. Sentiment analysis extracts the polarity to understand the intensity and subjectivity in the text. This work uses a lexicon-based method to perform sentiment analysis and shows an evaluation of classification models trained over textual data. The lexicon-based methods identify the intensity of emotion and subjectivity at word levels. The categorization identifies the informative words inside a text and specifies the quantitative ranking of the polarity of words. This work is based on a multi-class problem of text being labeled as positive, negative, or neutral. Twitter sentiment dataset containing 1.6 million unprocessed tweets is used with lexicon-based methods like Text Blob and Vader Sentiment to introduce the neutrality measure on text. The analysis of lexicons shows how the word count and the intensity classify the text. A comparative analysis of machine learning models, Naiive Bayes, Support Vector Machines, Multinomial Logistic Regression, Random Forest, and Extreme Gradient (XG) Boost performed across multiple performance metrics. The best estimations are achieved through Random Forest with an accuracy score of 81%. Additionally, sentiment analysis is applied for a personality judgment case against a Twitter profile based on online activity.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets