Neural Encoding for Image Recall: Human-Like Memory (2409.11750v1)
Abstract: Achieving human-like memory recall in artificial systems remains a challenging frontier in computer vision. Humans demonstrate remarkable ability to recall images after a single exposure, even after being shown thousands of images. However, this capacity diminishes significantly when confronted with non-natural stimuli such as random textures. In this paper, we present a method inspired by human memory processes to bridge this gap between artificial and biological memory systems. Our approach focuses on encoding images to mimic the high-level information retained by the human brain, rather than storing raw pixel data. By adding noise to images before encoding, we introduce variability akin to the non-deterministic nature of human memory encoding. Leveraging pre-trained models' embedding layers, we explore how different architectures encode images and their impact on memory recall. Our method achieves impressive results, with 97% accuracy on natural images and near-random performance (52%) on textures. We provide insights into the encoding process and its implications for machine learning memory systems, shedding light on the parallels between human and artificial intelligence memory mechanisms.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.