Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Neural Dynamic Model based on Activation Diffusion and a Micro-Explanation for Cognitive Operations

Published 27 Nov 2020 in q-bio.NC and cs.AI | (2012.00104v1)

Abstract: The neural mechanism of memory has a very close relation with the problem of representation in artificial intelligence. In this paper a computational model was proposed to simulate the network of neurons in brain and how they process information. The model refers to morphological and electrophysiological characteristics of neural information processing, and is based on the assumption that neurons encode their firing sequence. The network structure, functions for neural encoding at different stages, the representation of stimuli in memory, and an algorithm to form a memory were presented. It also analyzed the stability and recall rate for learning and the capacity of memory. Because neural dynamic processes, one succeeding another, achieve a neuron-level and coherent form by which information is represented and processed, it may facilitate examination of various branches of Artificial Intelligence, such as inference, problem solving, pattern recognition, natural language processing and learning. The processes of cognitive manipulation occurring in intelligent behavior have a consistent representation while all being modeled from the perspective of computational neuroscience. Thus, the dynamics of neurons make it possible to explain the inner mechanisms of different intelligent behaviors by a unified model of cognitive architecture at a micro-level.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.