Papers
Topics
Authors
Recent
2000 character limit reached

Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models (2409.11263v1)

Published 17 Sep 2024 in cs.NE and cs.CL

Abstract: This paper introduces Bio-Inspired Mamba (BIM), a novel online learning framework for selective state space models that integrates biological learning principles with the Mamba architecture. BIM combines Real-Time Recurrent Learning (RTRL) with Spike-Timing-Dependent Plasticity (STDP)-like local learning rules, addressing the challenges of temporal locality and biological plausibility in training spiking neural networks. Our approach leverages the inherent connection between backpropagation through time and STDP, offering a computationally efficient alternative that maintains the ability to capture long-range dependencies. We evaluate BIM on language modeling, speech recognition, and biomedical signal analysis tasks, demonstrating competitive performance against traditional methods while adhering to biological learning principles. Results show improved energy efficiency and potential for neuromorphic hardware implementation. BIM not only advances the field of biologically plausible machine learning but also provides insights into the mechanisms of temporal information processing in biological neural networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.