Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Matrix Completion and Decomposition in Phase Bounded Cones (2409.10282v1)

Published 16 Sep 2024 in math.OC, cs.SY, eess.SY, and math.RA

Abstract: The problem of matrix completion and decomposition in the cone of positive semidefinite (PSD) matrices is a well-understood problem, with many important applications in areas such as linear algebra, optimization, and control theory. This paper considers the completion and decomposition problems in a broader class of cones, namely phase-bounded cones. We show that most of the main results from the PSD case carry over to the phase-bounded case. More precisely, this is done by first unveiling a duality between the completion and decomposition problems, using a dual cone interpretation. Based on this, we then derive necessary and sufficient conditions for the phase-bounded completion and decomposition problems, and also characterize all phase-bounded completions of a completable partial matrix with a banded pattern.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.