Papers
Topics
Authors
Recent
2000 character limit reached

Python Symbolic Execution with LLM-powered Code Generation

Published 14 Sep 2024 in cs.SE and cs.PL | (2409.09271v1)

Abstract: Symbolic execution is a key technology in software testing, which generates test cases by collecting symbolic path constraints and then solving constraints with SMT solvers. Symbolic execution has been proven helpful in generating high-coverage test cases, but its limitations, e.g., the difficulties in solving path constraints, prevent it from broader usage in software testing. Moreover, symbolic execution has encountered many difficulties when applied to dynamically typed languages like Python, because it is extremely challenging to translate the flexible Python grammar into rigid solvers. To overcome the main challenges of applying symbolic execution in Python, we proposed an LLM-empowered agent, LLM-Sym, that automatically calls an SMT solver, Z3, to solve execution path constraints. Based on an introductory-level symbolic execution engine, our LLM agent can extend it to supporting programs with complex data type `list'. The core contribution of LLM-Sym is translating complex Python path constraints into Z3 code. To enable accurate path-to-Z3 translation, we design a multiple-step code generation pipeline including type inference, retrieval and self-refine. Our experiments demonstrate that LLM-Sym is capable of solving path constraints on Leetcode problems with complicated control flows and list data structures, which is impossible for the backbone symbolic execution engine. Our approach paves the way for the combination of the generation ability of LLMs with the reasoning ability of symbolic solvers, and opens up new opportunities in LLM-augmented test case generation.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 9 likes about this paper.