Markov chains, CAT(0) cube complexes, and enumeration: monotone paths in a strip mix slowly (2409.09133v1)
Abstract: We prove that two natural Markov chains on the set of monotone paths in a strip mix slowly. To do so, we make novel use of the theory of non-positively curved (CAT(0)) cubical complexes to detect small bottlenecks in many graphs of combinatorial interest. Along the way, we give a formula for the number c_m(n) of monotone paths of length n in a strip of height m. In particular we compute the exponential growth constant of c_m(n) for arbitrary m, generalizing results of Williams for m=2, 3.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.