Papers
Topics
Authors
Recent
2000 character limit reached

Virtual Node Generation for Node Classification in Sparsely-Labeled Graphs (2409.07712v1)

Published 12 Sep 2024 in cs.SI and cs.LG

Abstract: In the broader machine learning literature, data-generation methods demonstrate promising results by generating additional informative training examples via augmenting sparse labels. Such methods are less studied in graphs due to the intricate dependencies among nodes in complex topology structures. This paper presents a novel node generation method that infuses a small set of high-quality synthesized nodes into the graph as additional labeled nodes to optimally expand the propagation of labeled information. By simply infusing additional nodes, the framework is orthogonal to the graph learning and downstream classification techniques, and thus is compatible with most popular graph pre-training (self-supervised learning), semi-supervised learning, and meta-learning methods. The contribution lies in designing the generated node set by solving a novel optimization problem. The optimization places the generated nodes in a manner that: (1) minimizes the classification loss to guarantee training accuracy and (2) maximizes label propagation to low-confidence nodes in the downstream task to ensure high-quality propagation. Theoretically, we show that the above dual optimization maximizes the global confidence of node classification. Our Experiments demonstrate statistically significant performance improvements over 14 baselines on 10 publicly available datasets.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.