Self-Masking Networks for Unsupervised Adaptation (2409.07577v1)
Abstract: With the advent of billion-parameter foundation models, efficient fine-tuning has become increasingly important for the adaptation of models to downstream tasks. However, especially in computer vision, it can be hard to achieve good performance when access to quality labeled data is lacking. In this work, we propose a method adapting pretrained generalist models in a self-supervised manner by learning binary masks. These self-supervised masking networks (SMNs) are up to 79x more efficient to store and significantly improve performance on label-efficient downstream tasks. We validate the usefulness of learning binary masks as a fine-tuning method on 8 datasets and 3 model architectures, and we demonstrate the effectiveness of SMNs in 3 label-efficient settings.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.