Steady-state entanglement scaling in open quantum systems: A comparison between several master equations (2409.06326v1)
Abstract: We investigate the scaling of the fermionic logarithmic negativity (FLN) between complementary intervals in the steady state of a driven-dissipative tight-binding critical chain, coupled to two thermal reservoirs at its edges. We compare the predictions of three different master equations, namely a nonlocal Lindblad equation, the Redfield equation, and the recently proposed universal Lindblad equation (ULE). Within the nonlocal Lindblad equation approach, the FLN grows logarithmically with the subsystem size $\ell$, for any value of the system-bath coupling and of the bath parameters. This is consistent with the logarithmic scaling of the mutual information analytically demonstrated in [Phys. Rev. B 106, 235149 (2022)]. In the ultraweak-coupling regime, the Redfield equation and the ULE exhibit the same logarithmic increase; such behavior holds even when moving to moderately weak coupling and intermediate values of $\ell$. However, when venturing beyond this regime, the FLN crosses over to superlogarithmic scaling for both equations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.