Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral oversubtraction? An approach for speech enhancement after robot ego speech filtering in semi-real-time (2409.06274v1)

Published 10 Sep 2024 in cs.RO, cs.SD, and eess.AS

Abstract: Spectral subtraction, widely used for its simplicity, has been employed to address the Robot Ego Speech Filtering (RESF) problem for detecting speech contents of human interruption from robot's single-channel microphone recordings when it is speaking. However, this approach suffers from oversubtraction in the fundamental frequency range (FFR), leading to degraded speech content recognition. To address this, we propose a Two-Mask Conformer-based Metric Generative Adversarial Network (CMGAN) to enhance the detected speech and improve recognition results. Our model compensates for oversubtracted FFR values with high-frequency information and long-term features and then de-noises the new spectrogram. In addition, we introduce an incremental processing method that allows semi-real-time audio processing with streaming input on a network trained on long fixed-length input. Evaluations of two datasets, including one with unseen noise, demonstrate significant improvements in recognition accuracy and the effectiveness of the proposed two-mask approach and incremental processing, enhancing the robustness of the proposed RESF pipeline in real-world HRI scenarios.

Summary

We haven't generated a summary for this paper yet.