Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Competency-Aware Planning for Probabilistically Safe Navigation Under Perception Uncertainty (2409.06111v4)

Published 9 Sep 2024 in cs.RO, cs.AI, cs.CV, cs.SY, and eess.SY

Abstract: Perception-based navigation systems are useful for unmanned ground vehicle (UGV) navigation in complex terrains, where traditional depth-based navigation schemes are insufficient. However, these data-driven methods are highly dependent on their training data and can fail in surprising and dramatic ways with little warning. To ensure the safety of the vehicle and the surrounding environment, it is imperative that the navigation system is able to recognize the predictive uncertainty of the perception model and respond safely and effectively in the face of uncertainty. In an effort to enable safe navigation under perception uncertainty, we develop a probabilistic and reconstruction-based competency estimation (PaRCE) method to estimate the model's level of familiarity with an input image as a whole and with specific regions in the image. We find that the overall competency score can correctly predict correctly classified, misclassified, and out-of-distribution (OOD) samples. We also confirm that the regional competency maps can accurately distinguish between familiar and unfamiliar regions across images. We then use this competency information to develop a planning and control scheme that enables effective navigation while maintaining a low probability of error. We find that the competency-aware scheme greatly reduces the number of collisions with unfamiliar obstacles, compared to a baseline controller with no competency awareness. Furthermore, the regional competency information is very valuable in enabling efficient navigation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com