Papers
Topics
Authors
Recent
2000 character limit reached

Towards Multi-agent Policy-based Directed Hypergraph Learning for Traffic Signal Control

Published 8 Sep 2024 in cs.MA | (2409.05037v1)

Abstract: Deep reinforcement learning (DRL) methods that incorporate graph neural networks (GNNs) have been extensively studied for intelligent traffic signal control, which aims to coordinate traffic signals effectively across multiple intersections. Despite this progress, the standard graph learning used in these methods still struggles to capture higher-order correlations in real-world traffic flow. In this paper, we propose a multi-agent proximal policy optimization framework DHG-PPO, which incorporates PPO and directed hypergraph module to extract the spatio-temporal attributes of the road networks. DHG-PPO enables multiple agents to ingeniously interact through the dynamical construction of hypergraph. The effectiveness of DHG-PPO is validated in terms of average travel time and throughput against state-of-the-art baselines through extensive experiments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.