Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Soft Actor-Critic with Beta Policy via Implicit Reparameterization Gradients (2409.04971v1)

Published 8 Sep 2024 in cs.LG and cs.AI

Abstract: Recent advances in deep reinforcement learning have achieved impressive results in a wide range of complex tasks, but poor sample efficiency remains a major obstacle to real-world deployment. Soft actor-critic (SAC) mitigates this problem by combining stochastic policy optimization and off-policy learning, but its applicability is restricted to distributions whose gradients can be computed through the reparameterization trick. This limitation excludes several important examples such as the beta distribution, which was shown to improve the convergence rate of actor-critic algorithms in high-dimensional continuous control problems thanks to its bounded support. To address this issue, we investigate the use of implicit reparameterization, a powerful technique that extends the class of reparameterizable distributions. In particular, we use implicit reparameterization gradients to train SAC with the beta policy on simulated robot locomotion environments and compare its performance with common baselines. Experimental results show that the beta policy is a viable alternative, as it outperforms the normal policy and is on par with the squashed normal policy, which is the go-to choice for SAC. The code is available at https://github.com/lucadellalib/sac-beta.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets