Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MILE: A Mutation Testing Framework of In-Context Learning Systems (2409.04831v1)

Published 7 Sep 2024 in cs.SE, cs.AI, cs.CL, cs.CR, and cs.LG

Abstract: In-context Learning (ICL) has achieved notable success in the applications of LLMs. By adding only a few input-output pairs that demonstrate a new task, the LLM can efficiently learn the task during inference without modifying the model parameters. Such mysterious ability of LLMs has attracted great research interests in understanding, formatting, and improving the in-context demonstrations, while still suffering from drawbacks like black-box mechanisms and sensitivity against the selection of examples. In this work, inspired by the foundations of adopting testing techniques in ML systems, we propose a mutation testing framework designed to characterize the quality and effectiveness of test data for ICL systems. First, we propose several mutation operators specialized for ICL demonstrations, as well as corresponding mutation scores for ICL test sets. With comprehensive experiments, we showcase the effectiveness of our framework in evaluating the reliability and quality of ICL test suites. Our code is available at https://github.com/weizeming/MILE.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com